fvec_alpha_norm method
computes the p-norm of a vector
Computes the p-norm of a vector for \f$ p = \alpha \f$
\f$ L^p = ||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p ) ^ \frac{1}{p} \f$
If p = 1, the result is the Manhattan distance.
If p = 2, the result is the Euclidean distance.
As p tends towards large values, \f$ L^p \f$ tends towards the maximum of the input vector.
References:
- \f$L^p\f$ space on Wikipedia
\param v vector to compute norm from \param p order of the computed norm
\return the p-norm of v
Implementation
double fvec_alpha_norm(
ffi.Pointer<fvec_t> v,
double p,
) {
return _fvec_alpha_norm(
v,
p,
);
}