Mathematical library for working with ECG data from the Callibri sensor.
The main functionality is the calculation of cardio-interval lengths, heart rate and Stress Index (SI).
During the first 6 seconds the algorithm is learning, if no 5 RR-intervals are found in the signal 5 RR-intervals are not found, the training is repeated. Further work with the library is iterative (adding new data, calculating indicators).
Initialization
Determine the basic parameters
- Raw signal sampling frequency. Integer type. The allowed values are 250 or 1000.
- Data processing window size. Integer type. Valid values of sampling_rate / 4 or sampling_rate / 2.
- Number of windows to calculate SI. Integer type. Allowable values
20...50
. - The averaging parameter of the IN calculation. Default value is 6.
Creating a library instance
Firstly you need to determine lybrary parameters and then put them to library. Tne next step is initialize the filters. In the current version the filters are built-in and clearly defined: Butterworth 2nd order BandPass 5_15 Hz.
You can initialize averaging for SI calculation. It is optional value.
// 1. Raw signal sampling frequency
int samplingRate = 250;
// 2. Data processing window size
int dataWindow = samplingRate / 2;
// 3. Number of windows to calculate SI
int nwinsForPressureIndex = 30;
final math = CallibriEcgMath(samplingRate, dataWindow, nWinsForPressureIndex);
// optional
// 4. The averaging parameter of the IN calculation. Default value is 6.
int pressureIndexAverage = 6;
math.setPressureAverage(pressureIndexAverage);
Initializing a data array for transfer to the library:
The size of the transmitted array has to be of a certain length:
- 25 values for a signal frequency of 250 Hz
- 100 values for a signal frequency of 1000 Hz
final rawData = List<double>.generate(25, (i) => i);
// or
final rawData = List<double>.generate(100, (i) => i);
Optional functions (not necessary for the library to work)
Check for initial signal corruption. This method should be used if you want to detect and notify of a distorted signal explicitly.
if (math.isInitialSignalCorrupted){
// Signal corrupted!!!
}
Work with the library
- Adding and process data:
math.push(samples)
math.process()
- Getting the results:
if(math.rr_detected){
// check for a new peak in the signal
// RR-interval length
double rr = math.rr
// HR
double hr = math.hr
// SI
double pi = math.pressureIndex
// Moda
double moda = math.moda
// Amplitude of mode
double amplModa = math.amplitudeModa
// Variation range
double variationDist = math.variationDistance
math.checkRR()
}
Finishing work with the library:
math.dispose();