abstract_dart 1.0.2 abstract_dart: ^1.0.2 copied to clipboard
A collection of algebraic structures borrowed from abstract algebra. Semigroup, Monoid, Group & Field.
abstract_dart #
A collection of algebraic structures borrowed from abstract algebra. Semigroup, Monoid, Group, Field, and more.
Example:
/// Create a semigroup
final semigroup = Semigroup_.create<double>((a, b) => a + b);
/// Create a monoid
final monoid = Monoid_.create<double>(() => 0.0, (a, b) => a + b);
/// Create a group
final group =
Group_.create<double>(() => 0.0, (a, b) => a + b, (a, b) => a - b);
/// Create a field
final field = Field_.create<double>(
Group_.create<double>(() => 0.0, (a, b) => a + b, (a, b) => a - b),
Group_.create<double>(() => 1.0, (a, b) => a * b, (a, b) => a / b),
);
/// Monoids
const bigIntSumMonoid = BigIntSumMonoid();
const bigIntProductMonoid = BigIntProductMonoid();
const decimalSumMonoid = DecimalSumMonoid();
const decimalProductMonoid = DecimalProductMonoid();
const stringConcatMonoid = StringConcatMonoid();
const numSumMonoid = NumSumMonoid();
const numProductMonoid = NumProductMonoid();
const intSumMonoid = IntSumMonoid();
const intProductMonoid = IntProductMonoid();
const doubleSumMonoid = DoubleSumMonoid();
const doubleProductMonoid = DoubleProductMonoid();
/// Groups
const bigIntSumGroup = BigIntSumGroup();
const decimalSumGroup = DecimalSumGroup();
const decimalProductGroup = DecimalProductGroup();
const doubleProductGroup = DoubleProductGroup();
const doubleSumGroup = DoubleSumGroup();
const numProductGroup = NumProductGroup();
const numSumGroup = NumSumGroup();
/// Fields
const decimalField = DecimalField();
const doubleField = DoubleField();
const numField = NumField();
Semigroup_<A>
- An operation of type A+A => A
Monoid_<A>
(a Semigroup_<A>
)
- An operation of type A+A => A
- An identity element so that a+e = a
Group_<A>
(a Monoid_<A>
, a Semigroup_<A>
)
- An operation of type A+A => A
- An inverse operation of type A-A => A
- An identity element so that a+e = a
Field_<A>
- A Group (addition)
- A Group (multiplication)
ScalarMonoid_<K, F>
- An operation of type K•F => K
- An identity element so that K•e = K
VectorSpace_<K, F>
- A Group
- A ScalarMonoid<K, F> (scalar multiplication)
Algebra_<K, F>
(a VectorSpace_<K, F>
, a Field_<K>
)
- A Group
- A Group
- A ScalarMonoid<K, F> (scalar multiplication)
abstract_dart does not enforce any of the properties that these structures require in a mathematical setting.